Bioequivalence of Nanomedicines: The need for novel bioanalytical approaches

FY 2015 Regulatory Science Initiatives Part 15 Public Meeting

FDA White Oak Campus

June 5, 2015

Stephan Stern, Ph.D., DABT

ncl@mail.nih.gov

http://ncl.cancer.gov

Nanomedicine

The First Nanomedicine generic

- Lipodox, a generic version of Doxil, was the first generic nanomedicine approved by the FDA (2013).
- <u>Lipodox has not been approved by the EMA.</u>

Nanomedicines are complex formulations, and there will always be some degree of polydispersity and batch-to-batch variation. For generic versions, the challenge is to identify meaningful differences between the follow-on and the reference/innovator product.

More Nanomedicine generics are Coming

- Azaya has bioequivalence study underway now with a generic Doxil formulation, ATI-0918.
- Sorrento Therapeutics also has an ongoing bioequivalence study for a nab-paclitaxel alternative IG-001.

As the number of FDA-approved nanomedicines continues to grow, the importance of developing a framework for evaluation of follow on versions of these treatments becomes increasingly important.

Nanomedicine Pharmacokinetics

Nanomedicine Drug fractions in the circulation:

- I. NM encapsulated fraction-
- II. Unencapsulated fraction
 - fu : unbound fraction
 - 1-fu: protein bound fraction

Nanomedicine Bioequivalence

As per EMA/FDA guidance, nanomedicine bioequivalence is based on PK of total, unencapsulated and encapsulated drug fractions.

Existing Fractionation Methods

Main Problems

- Process induced artifacts
- Difficult to accurately differentiate protein bound and encapsulated API

Current methods have inherent flaws, adding inaccuracy and variability to nanomedicine fraction quantitation

Case Study: Sun Pharma's Lipodox Bioequivalence Study

Study ID	Dose/patient population	Reference product	Number analysed (n)
PKD/08/038	50mg/m² ovarian cancer	Caelyx (Europe)	23
PKD/09/031	30mg/m² multiple myeloma	Caelyx (Europe)	26
PKD/09/030	50mg/m ² ovarian cancer	Doxil (US)	41

- From <u>Doxil</u> comparison study report: 'Expecting +/- 5 % variation in T/R Ratio with expected intra subject CV of around 22.5 %, 24 subjects were required to prove bioequivalence. However based on the <u>variability of free doxorubicin</u> sample size was increased from <u>24 to 36 evaluable subjects in order to improve the result and meet the BE criteria for free doxorubicin...'</u>
- From the EMA Assessment report: Free (un-encapsulated) doxorubicin is comparable, within 80.00-125.00% to Doxil (US reference product), but not Caelyx. This may be due to insufficient power of the Caelyx studies.

Ref: European Medicines Agency (EMA), Committee for Medicinal Products for Human Use (CHMP) (2011a) CHMP Assessment Report: Doxorubicin Sun.

Sources of Intra-Subject Variability

- From the EMA Assessment report: The intra-subject variability for the encapsulated and total drug was CV <24%, while variability for the free/unencapsulated drug was 30-60%.
- Intra-subject variability >30% is considered highly variable

Ref: The AAPS Journal, Vol. 10, No. 1, March 2008 (# 2008)

Sources of intra-subject variability in crossover design:

- Biological considerations
- Errors in parameter estimates (e.g., AUC, Cmax)
- Measurement of drug concentrations

A likely source of unencapsulated variability

Ref: Sample Size Calculations in Clinical Research, Second Edition By Shein-Chung Chow, Hansheng Wang, Jun Shao

In Summary

- The lack of robust nanomedicine fractionation methods are an impediment to both nanomedicine <u>characterization</u> and <u>nanomedicine generic development</u>
- Higher quality pharmacokinetic data will decrease <u>patient</u> <u>sample size</u> and facilitate regulatory determination of <u>bioequivalence</u>
- The FDA should support <u>development</u>, <u>validation</u>, <u>implementation</u> and <u>harmonization</u> of novel nanomedicine fractionation methods